5x^2-x-30=2x^2-x

Simple and best practice solution for 5x^2-x-30=2x^2-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x^2-x-30=2x^2-x equation:



5x^2-x-30=2x^2-x
We move all terms to the left:
5x^2-x-30-(2x^2-x)=0
We add all the numbers together, and all the variables
5x^2-1x-(2x^2-x)-30=0
We get rid of parentheses
5x^2-2x^2-1x+x-30=0
We add all the numbers together, and all the variables
3x^2-30=0
a = 3; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·3·(-30)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*3}=\frac{0-6\sqrt{10}}{6} =-\frac{6\sqrt{10}}{6} =-\sqrt{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*3}=\frac{0+6\sqrt{10}}{6} =\frac{6\sqrt{10}}{6} =\sqrt{10} $

See similar equations:

| (2x-5)=(x+21) | | x^2-48x=2x | | 0.02(x-4)=140 | | x2−x4=0 | | 5x/3=x-5/2 | | -1x-8x+18=3x-24 | | 6y-42+10y=8y-3 | | 5w(w-9)(w-6)=0 | | 0.06(y-7)+0.10y=0.08y-0.3 | | 7+3x+-12=3x+1 | | 0.3x+1.8=0.4(x-15)-0.2 | | 3.5x^2-60x+200=0 | | 11x+9=7x+9 | | X2+3x=20 | | 0.02(x-10)=150 | | 40-(10/2x)=0 | | -x9/7=1-x/9 | | -6.8+4.2d=4.2 | | 6x-6=5x-2-2x | | (3/x)+6=-45 | | 2/3x+5=20−x | | x+(18/12)=(3/4)x | | 5(y+6)(-y-8)=0 | | 2x+6/4=-7 | | 4x/15-((6x+28)/5)=0 | | x/2-3=×/7+2 | | x+(4/x)=4 | | 4x/5+6x+2=3(2x+2) | | 2c+3=3c-4= | | -4(8+5n)+8=8 | | x^2+30x-29=0 | | 4x/15-(6x+28)/5=0 |

Equations solver categories